
Object Orientend Conception - Technical
details and conception documents

Table of contents

Object Orientend Conception - Technical details and conception documents

Table of contents

Technical details

Overview of the technologies used

Use of the dependencies

Networking

Client REST API
Server REST API

GUI

Conception documents

Use case diagrams

Sequence diagrams

Class diagrams

First design
Current implementation

State machine diagrams

Technical details

Overview of the technologies used

Programming language: Java 8
GUI: JavaFX
Network communications: JSON over HTTP - Unirest and Pippo libraries
Data persistence: BSON (JSON-like no-SQL DB model) - MongoDB and Jongo libraries

Use of the dependencies

We used maven to manage dependencies.

The client use JavaFX to handle the UI, and the libraries Pippo and Unirest for networking.

af://n2
af://n4
af://n44
af://n45
af://n55

Both the client and the server use Pippo as an http server to handle incomming http requests, and the
Unirest library on the client side to initiate http requests. All data is passed throught REST endpoints as
JSON. The serialization/deserialization to and from POJOs (Plain Old Java Objects) is then handled directly by
Pippo or with the help of the GSon library for Unirest.

To persist the data between session on the client side, the MongoDB java library and Jongo (a wrapper
around Mongo with a mongo-shell like syntax to facilitate database requests). The class that handles the
database is Database.

Networking

In p2p mode, the discovery is handled separatly from the rest of the networking by using udp broadcasts on
the local network. All clients receiving the broadcast respond directly to the source of the broadcast with a
traditional HTTP request to exchange the users info.

In the presence server mode, the server keeps a list of all connected and disconnected users. Each time a
new user connect to the presence server, they receive the list of all users and each users is notified of the
new user.

All users receive a UUID (Universal Unique IDentifier) the first time they launch the app. This ID is used
throught the network to identify the user without any risk of collision (the UUID is generated randomly with
a near impossible chance of having twice the same ID).

Each client start an HTTP server wich is used to communicate with other clients.

The presence server also starts an HTTP server.

Client REST API

The API is defined in the NetworkService class as follows:

/user

GET: return the local user info
/user/connect

POST, PUT: Connect to the user
/users

DELETE: Delete yourself from the distant user list
/message

POST: Send a message to the user
/notify

POST: Notify the user of an username change

Server REST API

The API is defined in the ServerBackend class as follows:

/user

GET: Connect to the presence server
PUT: Get the list of connected users
DELETE: Disconnect from the presence server

/user/name

file:///home/lucien/Documents/Cours/poo/NewClav3000/src/main/java/com/insa/app/database/Database.java
af://n60
af://n66
file:///home/lucien/Documents/Cours/poo/NewClav3000/src/main/java/com/insa/app/network/NetworkService.java
af://n94
file:///home/lucien/Documents/Cours/poo/NewClav3000/src/main/java/com/insa/app/server/ServerBackend.java

POST: Notify the presence server of an username change

GUI

We used JavaFX with SceneBuilder to create the GUI. The controller class is GuiController. It handles event
sent by JavaFX.

We paid particular attention to synchronize access to the underlying data : all modifications have to be done
in the JavaFX thread.

Conception documents

Since those conceptions documents were realised during the implementation they are only relevant to the
1st specification.

The class diagram still represent the global architecture of the application, even if class names were
changed and a lot of things changed.

Most sequence diagrams are still relevant.

Use case diagrams

Chat user use-case

Sequence diagrams

af://n111
file:///home/lucien/Documents/Cours/poo/NewClav3000/src/main/java/com/insa/app/controller/GuiController.java
af://n114
af://n118
af://n120

Sequence diagram "Start conversation with"

Sequence diagram "Send Message"

Sequence diagram "Receive Message"

Sequence diagram "Find Users"

Sequence diagram "Change User Name"

Sequence diagram "Leave Chat Room"

Sequence diagram "Connection Closed"

Sequence diagram "Close connection"

Class diagrams

First design

af://n129
af://n130

Initial class diagram

Current implementation

af://n132

Current class diagram implementation

State machine diagrams

af://n134

State machine diagram for the network controller on the client side

	Object Orientend Conception - Technical details and conception documents
	Table of contents
	Technical details
	Overview of the technologies used
	Use of the dependencies
	Networking
	Client REST API
	Server REST API

	GUI

	Conception documents
	Use case diagrams
	Sequence diagrams
	Class diagrams
	First design
	Current implementation

	State machine diagrams

